نوع مقاله : مقاله کامل پژوهشی

نویسنده

استادیار گروه مهندسی بافت و علوم سلولی کاربردی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران

چکیده

پروتز‌های زانو، به‌عنوان یکی از محصولات پزشکی برای عملکرد مطلوب در دراز‌مدت (عدم شل‌شدگی و جراحی مجدد)، هنوز نیازمند راهکارهای طراحی هستند. در مطالعة حاضر، طرح کسر عاملی کامل از طراحی آزمایشات، به همراه تحلیل المان محدود، استفاده شد تا اثر شکل داخلی قطعة فمورال پروتز زانو بر پایداری مکانیکی ایمپلنت و تنش‌های بیومکانیکی ایجاد‌شده در خود ایمپلنت، سیمان استخوانی و استخوان مجاور، بررسی شود. سپس از روش واسپاس، که یکی از روش‌های انتخاب چند‌شاخصه است، برای رتبه‌بندی طرح‌ها استفاده شد. نتایج تحلیل واریانس، نشان داد که هندسة شکل داخلی قطعة فمورال بر عملکرد پروتز زانو اثر‌گذار است؛ به‌طوری‌که از میان عوامل در‌نظر‌گرفته شده، زاویة بین برش‌های پایینی و جلویی، زاویة بین برش‌های پایینی و پشتی و همچنین ضخامت سیمان استخوان، به‌عنوان تأثیر‌گذارترین عوامل شناسایی شدند. به‌علاوه  با تحلیل آماری، مدل ریاضی پیش‌بینی کنندة مربوط به هر‌یک از معیارهای سنجش عملکرد نیز برآورد شدند. نتایج رتبه‌بندی و تحلیل حساسیت نشان داد، که طرح‌های برتر اغلب لایة ضخیم‌تری از سیمان دارند. این مطالعه همچنین نشان داد که هندسة فعلی قطعة فمورال، بهترین طرح نیست و اصلاح آن، می‌تواند عملکرد پروتز را در بلند‌مدت بهبود دهد.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Femoral Component Interface Design on Biomechanical Performance of Knee Prosthesis

نویسنده [English]

  • Marjan Bahraminasab

Assisstant Professor, Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran

چکیده [English]

Knee implants still lacks sufficient design solutions to ensure improved long term performance without aseptic loosening and the subsequent revision surgery.The present paper, used full factorial design of experiment (DOE) method along with finite element analysis (FEA) to assess the influence of internal contours of femoral component on mechanical stability of the prosthesis, and the biomechanical stresses experienced by the femoral component, bone cement and the adjoining bone with preservation of the external contours.The WASPAS approach, as a multi criteria decision analysis (MCDA) technique, was then used to rank the alternative designs. The results of analysis of variance showed that the internal shape of femoral component contours influenced the performance measureswhere the angle between the distal and anterior cuts, the angle between the distal and posterior cuts, and the cement thickness were highlysignificant. The predictive mathematical models of each performance measureswre also estimated through statistical analysis. The ranking order and the following sensitivity analysis revealed that the top designs mostly had higher cement thickness and the original design was not the top choice for femoral component which by improving the current designbetter long term performance can be achieved.
 

کلیدواژه‌ها [English]

  • Cemented knee implant
  • Interface geometry
  • Design of experiments
  • finite element analysis
[1]     Seki, T., et al., Is bone density in the distal femur affected by use of cement and by femoral component design in total knee arthroplasty? Journal of Orthopaedic Science, 1999. 4(3): p. 180-186.
[2]     Saari, T., et al., Posterior stabilized component increased femoral bone loss after total knee replacement. 5-year follow-up of 47 knees using dual energy X-ray absorptiometry. The Knee, 2006. 13(6): p. 435-439.
[3]     Completo, A., et al., Relationship of design features of stemmed tibial knee prosthesis with stress shielding and end-of-stem pain. Materials & Design, 2009. 30(4): p. 1391-1397.
[4]     Bergschmidt, P., et al., The All-Ceramic Knee Endoprosthesis-The Gap Between Expectation and Experience with Ceramic Implants. Seminars in Arthroplasty, 2012. 23: p. 262-267.
[5]     Bahraminasab, M., et al., On the influence of shape and material used for the femoral component pegs in knee prostheses for reducing the problem of aseptic loosening. Materials & Design, 2014. 55: p. 416-428.
[6]     Jahan, A. and M. Bahraminasab, Multicriteria Decision Analysis in Improving Quality of Design in Femoral Component of Knee Prostheses: Influence of Interface Geometry and Material. Advances in Materials Science and Engineering, 2015.
[7]     Zietz, C., et al., Comparison of cross-sections of different femoral components for revision total knee replacement. Journal of Orthopaedic Surgery, 2012. 20(1).
[8]     Wang, C.J., et al., Design and simulation of a femoral component peg in total knee replacement. Key Engineering Materials, 2011. 450: p. 111-114.
[9]     Gamero, V., et al., INFLUENCE OF THE GEOMETRY OF THE ATTACHING PEGS OF THE FEMORAL COMPONENT OF A KNEE PROSTHESIS. Biomedical Engineering: Applications, Basis and Communications, 2016. 28(03): p. 1650017.
[10] Van Lenthe, G.H., et al., Stemmed femoral knee prostheses: effects of prosthetic design and fixation on bone loss. Acta Orthopaedica, 2002. 73(6): p. 630-637.
[11] Van Loon, C.J.M., et al., Distal femoral bone mineral density after total knee arthroplasty: A comparison with general bone mineral density. Archives of Orthopaedic and Trauma Surgery, 2001. 121(5): p. 282-285.
[12] Jahan, A., K.L. Edwards, and M. Bahraminasab, Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design. 2016, Boston: Butterworth-Heinemann.
[13] Liau, J., et al., Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. Clinical Biomechanics, 2002. 17(9-10): p. 698-704.
[14] Ramaniraka, N., L. Rakotomanana, and P.-F. Leyvraz, The fixation of the cemented femoral component. Bone & Joint Journal, 2000. 82(2): p. 297-303.
[15] Montgomery, D.C., Design and analysis of experiments. 2008: John Wiley & Sons.
[16] Bahraminasab, M., et al., Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Materials & Design, 2013. 52(0): p. 441-451.
[17] Bahraminasab, M., et al., Finite element analysis of the effect of shape memory alloy on the stress distribution and contact pressure in total knee replacement. Trends in Biomaterials and Artificial Organs, 2011. 25(3): p. 95-100.
[18] Halloran, J.P., A.J. Petrella, and P.J. Rullkoetter, Explicit finite element modeling of total knee replacement mechanics. Journal of Biomechanics, 2005. 38(2): p. 323-331.
[19] Godest, A.C., et al., Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of Biomechanics, 2002. 35(2): p. 267-275.
[20] Norman, T.L., et al., Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA). Journal of biomechanics, 2013. 46(5): p. 949-955.
[21] Janssen, D., K.A. Mann, and N. Verdonschot, Micro-mechanical modeling of the cement–bone interface: the effect of friction, morphology and material properties on the micromechanical response. Journal of biomechanics, 2008. 41(15): p. 3158-3163.
[22] Harrigan, T.P. and W.H. Harris, A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components. Journal of Biomechanics, 1991. 24(11): p. 1047-1058.
[23] Zavadskas, E., et al., Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 2012. 122(6): p. 3-6.
[24] Dejus, T. and J. Antucheviciene, Assessment of health and safety solutions at a construction site. Journal of Civil Engineering and Management, 2013. 19: p. 728-737.
[25] Chakraborty, S. and E.K. Zavadskas, Applications of WASPAS method in manufacturing decision making. Informatica, 2014.25(1): p. 1-20.
[26] Ghorshi Nezhad, M.R., et al., Planning the priority of high tech industries based on SWARA-WASPAS methodology: The case of the nanotechnology industry in Iran. Economic Research-Ekonomska Istrazivanja, 2015. 28(1): p. 1111-1137.
[27] Turskis, Z., et al., A Hybrid Model Based on Fuzzy AHP and Fuzzy WASPAS for Construction Site Selection. International Journal of Computers Communications & Control, 2015. 10(6): p. 113-128.
[28] Zavadskas, E.K., Z. Turskis, and J. Antucheviciene, Selectinga Contractor by Using a Novel Method for Multiple Attribute Analysis: Weighted Aggregated Sum Product Assessment with Grey Values (WASPAS-G). Studies in Informatics and Control, 2015. 24(2): p. 141-150.
[29] Taylor, M., D.S. Barrett, and D. Deffenbaugh, Influence of loading and activity on the primary stability of cementless tibial trays. Journal of Orthopaedic Research, 2012. 30(9): p. 1362-1368.
[30] Jahan, A., et al., A framework for weighting of criteria in ranking stage of material selection process. The International Journal of Advanced Manufacturing Technology, 2012. 58(1): p. 411-420.
[31] Alemi-Ardakani, M., et al., On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems with Applications, 2016. 46: p. 426-438.
[32] Petersen, M.M., et al., Decreased bone density of the distal femur after uncemented knee arthroplasty. A 1-year follow-up of 29 knees. Acta Orthopaedica Scandinavica, 1996. 67(4): p. 339-344.
[33] Bougherara, H., et al., The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010. 224(10): p. 1209-1219.
[34] Shi, J.F., et al., A dynamic model of simulating stress distribution in the distal femur after total knee replacement. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2007. 221(8): p. 903-912.
[35] Petersen, M.M., et al., Changes in bone mineral density of the distal femur following uncemented total knee arthroplasty. Journal of Arthroplasty, 1995. 10(1): p. 7-12.
[36] Wang, L. and H. Long, Investigation of material deformation in multi-pass conventional metal spinning. Materials & Design, 2011. 32(5): p. 2891-2899.
[37] Galloway, F., Large scale, population-based finite element analysis of cementless tibial tray fixation. 2012, University of Southampton.