نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

2 دانشیار، گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

3 استاد مدعو، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

10.22041/ijbme.2016.19419

چکیده

در مطالعه­ی حاضر، روشی نوین برای به­دست آوردن معادلات حاکم بر سیستم اسکلتی بدن انسان ارائه ‌شده­است. در این روش، رویکردی نوین برای وارد کردن ویژگی‌های سینماتیکی مفاصل زیستی و همچنین اثر زنجیره‌های پیچیده­ی سینماتیکی سیستم اسکلتی در معادلات حرکت ارائه ‌شده­است. روش پیشنهادی در این مقاله با استفاده از حساب دیفرانسیل توابع ماتریسی، معادلات حاکم بر سیستم اسکلتی را به‌صورت معادلات دیفرانسیل معمولی تحصیل می‌کند. علاوه ‌بر این، ازآنجا که معادلات حاصل به‌صورت بازگشتی ارائه‌شده‌اند، این روش برای به­دست آوردن معادلات دیفرانسیل حرکت سیستم اسکلتی بدن انسان، رویکردی کارا از نظر محاسباتی پیشنهاد می‌کند. به‌منظور بررسی صحت روابط پیشنهادشده در این مقاله، مکانیزمی استاندارد شامل سه حلقه­ی سینماتیکی بسته موردتوجه قرار گرفت. نتایج حاصل از حل دینامیک مستقیم این مکانیزم با استفاده از روش پیشنهادی، با نتایج ارائه‌شده در سایر مراجع معتبر مقایسه شدند و روش پیشنهادی صحت‌سنجی شد. به­علاوه، به‌منظور بررسی کاربرد روش پیشنهادی در شبیه‌سازی سیستم اسکلتی بدن انسان، مدل‌سازی دینامیکی کمربند شانه‌ای در حضور ریتم شانه در دستور کار قرار گرفت. برای توصیف ریاضی ریتم شانه از دو مدل ریاضی استفاده شد: مدل اصلی و مدل ساده‌شده. تفاوت میان نتایج شبیه‌سازی این دو مدل بر ضرورت استفاده از داده‌های آزمایشگاهی اصلی برای مدل‌سازی ریتم شانه تأکید می‌کرد. ازآنجا که علت علاقه‌مندی محققان به استفاده از داده‌های ساده‌شده­ی ریتم شانه ناشی از  محدودیت در فرمول‌های موجود برای مدل‌سازی سیستم اسکلتی می­شود، با استفاده از روش پیشنهادی در این مقاله این مشکل مرتفع می‌گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Novel Method for Mathematical Modeling of the Skeletal System of the Human Body: Incorporating the Kinematic Characteristics of Biological Joints and the Effects of Complex Kinematic Chains of the Skeletal System

نویسندگان [English]

  • Hossein Ehsani 1
  • Mostafa Rostami 2
  • Mohammad Parnianpour 3

1 Ph.D Candidates, Biomechanic Department, Biomedical EngineeringFaculty, Amirkabir University of Technology, Tehran, Iran

2 Associate Professor, Biomechanic Department, Biomedical EngineeringFaculty, Amirkabir University of Technology, Tehran, Iran

3 Adjunct Professor, Mechanical Engineering Department, Sharif University of Technology, Tehran

چکیده [English]

In the current study, a novel method for deriving the governing equations of the skeletal system of the human body has been presented. In this method, a novel approach for incorporating the kinematic characteristics of biological joints and also the effects of complex kinematic chains of the skeletal system has been proposed. The suggested method while utilizing the calculus of matrix-valued functions, derives the governing equations of the skeletal system in the form of ordinary differential equations. Moreover, since the formulations were presented in a recursive fashion, this paper suggests a computationally efficient algorithm to derive the differential equations of motion for the skeletal system. In order to examine the validity of the proposed formulations, a benchmark mechanism with three closed-loop kinematic constraints were considered. We compared the results obtained from our formulations with the outcomes presented in other studies and validated the proposed formulations. Besides, in order to investigate the application of the suggested method in simulation of the skeletal system of the human body, dynamical modeling of the shoulder rhythm was taken into consideration. Two models were employed for describing the shoulder rhythm: Original model and simplified model. The discrepancies observed between the outcomes of these two models delineate the necessity of using the original data for the shoulder rhythm. While the limitations of the available formulations have compelled the researchers to employ the simplified model for the shoulder rhythm, with the method we propose in this study this problem is obviated.

کلیدواژه‌ها [English]

  • skeletal system
  • Mathematical modeling
  • shoulder rhythm
[1]           R. Nisell, G. Nemeth, and H. Ohlsen, "Joint forces in extension of the knee. Analysis of a mechanical model," Acta Orthop Scand, vol. 57, pp. 41-6, Feb 1986.
[2]           G. T. Yamaguchi and F. E. Zajac, "A planar model of the knee joint to characterize the knee extensor mechanism," J Biomech, vol. 22, pp. 1-10, 1989.
[3]           S. L. Delp, J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen, "An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures," IEEE Trans Biomed Eng, vol. 37, pp. 757-67, Aug 1990.
[4]           T. M. van Eijden, W. de Boer, and W. A. Weijs, "The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle," J Biomech, vol. 18, pp. 803-9, 1985.
[5]           E. Y. Chao and B. F. Morrey, "Three-dimensional rotation of the elbow," J Biomech, vol. 11, pp. 57-73, 1978.
[6]           Y. Wong, W. Kim, and N. Ying, "Passive motion characteristics of the talocrural and the subtalar joint by dual Euler angles," J Biomech, vol. 38, pp. 2480-5, Dec 2005.
[7]           W. T. Dempster, "Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body, with special reference to the limbs," Technical Report WADC-TR-55-159, Wright-Patterson Air Force Base, OH: Aerospace Medical Research Laboratory, 1955.
[8]           C. Hogfors, B. Peterson, G. Sigholm, and P. Herberts, "Biomechanical model of the human shoulder joint--II. The shoulder rhythm," J Biomech, vol. 24, pp. 699-709, 1991.
[9]           C. Hogfors, G. Sigholm, and P. Herberts, "Biomechanical model of the human shoulder--I. Elements," J Biomech, vol. 20, pp. 157-66, 1987.
[10]         J. H. de Groot and R. Brand, "A three-dimensional regression model of the shoulder rhythm," Clin Biomech (Bristol, Avon), vol. 16, pp. 735-43, Nov 2001.
[11]         J. H. de Groot, "The variability of shoulder motions recorded by means of palpation," Clin Biomech (Bristol, Avon), vol. 12, pp. 461-472, Oct 1997.
[12]         C. K. Anderson, D. B. Chaffin, G. D. Herrin, and L. S. Matthews, "A biomechanical model of the lumbosacral joint during lifting activities," J Biomech, vol. 18, pp. 571-84, 1985.
[13]         D. Karlsson and B. Peterson, "Towards a model for force predictions in the human shoulder," J Biomech, vol. 25, pp. 189-99, Feb 1992.
[14]         F. C. Anderson and M. G. Pandy, "A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions," Comput Methods Biomech Biomed Engin, vol. 2, pp. 201-231, 1999.
[15]         K. R. Holzbaur, W. M. Murray, and S. L. Delp, "A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control," Ann Biomed Eng, vol. 33, pp. 829-40, Jun 2005.
[16]         V. De Sapio, K. Holzbaur, and O. Khatib, "The control of kinematically constrained shoulder complexes: physiological and humanoid examples," in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 2952-2959.
[17]         E. K. Chadwick, D. Blana, A. J. van den Bogert, and R. F. Kirsch, "A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements," IEEE Trans Biomed Eng, vol. 56, pp. 941-8, Apr 2009.
[18]         F. Moissenet, L. Chèze, and R. Dumas, "Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions," Multibody Syst Dyn, vol. 28, pp. 125-141, 2012.
[19]         R. Dumas, F. Moissenet, X. Gasparutto, and L. Cheze, "Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait," Proc Inst Mech Eng H, vol. 226, pp. 146-60, Feb 2012.
[20]         A. Ribeiro, J. Rasmussen, P. Flores, and L. Silva, "Modeling of the condyle elements within a biomechanical knee model," Multibody Syst Dyn, vol. 28, pp. 181-197, 2012/08/01 2012.
[21]         B. A. Garner and M. G. Pandy, "A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset," Comput Methods Biomech Biomed Engin, vol. 2, pp. 107-124, 1999.
[22]         C. Quental, J. Folgado, J. Ambrósio, and J. Monteiro, "A multibody biomechanical model of the upper limb including the shoulder girdle," Multibody Syst Dyn, vol. 28, pp. 83-108, 2012.
[23]         M. Koul, S. Shah, S. K. Saha, and M. Manivannan, "Reduced-order forward dynamics of multiclosed-loop systems," Multibody Syst Dyn, vol. 31, pp. 451-476, 2014/04/01 2014.
[24]         J. Baumgarte, "Stabilization of constraints and integrals of motion in dynamical systems," Comput Methods Appl Mech Eng, vol. 1, pp. 1-16, 1972.
[25]         W. Blajer, "Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems," Multibody Syst Dyn, vol. 7, pp. 265-284, 2002/04/01 2002.
[26]         A. Seth, M. Sherman, P. Eastman, and S. Delp, "Minimal formulation of joint motion for biomechanisms," Nonlinear Dynamics, vol. 62, pp. 291-303, 2010/10/01 2010.
[27]         H. Ehsani, M. Rostami, and M. Parnianpour, "A closed-form formula for the moment arm matrix of a general musculoskeletal model with considering joint constraint and motion rhythm," Multibody Syst Dyn, pp. 1-27, 2015/08/07 2015.
[28]         R. Featherstone, Rigid body dynamics algorithms. New York: Springer, 2008.
[29]         J. J. Uicker, P. N. Sheth, and B. Ravani, Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems, 2013.
[30]         J. Brewer, "Kronecker products and matrix calculus in system theory," Circuits and Systems, IEEE Transactions on, vol. 25, 1978, pp 781-772.
[31]         W. Schiehlen, Multibody Systems Handbook: Springer Berlin Heidelberg, 2012.
[32]         K. R. S. Holzbaur, "Upper limb biomechanics: Musculoskeletal modeling, surgical simulation, and scaling of muscle size and strength," Ph.D. dissertation, Stanford University, United States -- California, 2005.
[33]         F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Robot manipulator control : theory and practice, 2nd ed. New York: Marcel Dekker, 2004.