نوع مقاله : مقاله کامل پژوهشی

نویسنده

استادیار گروه مخابرات، دانشکده مهندسی برق و کامپیوتر، دانشگاه یزد

10.22041/ijbme.2008.13549

چکیده

استخراج الکتروکاردیوگرام جنین (FECG) از سیگنال های الکتریکی ثبت شده به وسیله الکترودهای قرار داده شده بر روی بدن مادر با توجه به اهمیتی که برای بررسی سلامت جنین دارد، از مسائل مطرح در مهندسی پزشکی و پردازش سیگنال های حیاتی است و بنابراین روش جداسازی کور منابع سیگنال که در آن لازم است یک یا چند سیگنال مطلوب صرفا از اطلاعات ترکیبات اندازه گیری شده آنها به وسیله چند گیرنده بدون در اختیار بودن مشخصات کانال انتقال استخراج گردد، یکی از روش های اساسی برای حل این مساله به شمار می آید. بیشتر الگوریتم های جداسازی کور منابع پیشنهاد شده برای جداسازی ECG جنین و ECG مادر بر پایه فرض استقلال این سیگنال هاست (تحلیل مولفه های مستقل). این مقاله روش جدیدی را با در نظر گرفتن فرض واقعی تر همبسته بودن سیگنال ها با یکدیگر پیشنهاد می دهد. روش موردنظر بر اساس اصل تجزیه والد به استخراج داده های مطلوب از داده های ثبت شده پرداخته و با به کارگیری الگوریتمی بر پایه آمارگان های مرتبه دوم، تخمینی از سیگنال های موردنظر را به دست می آورد. نتایج شبیه سازی بر روی سیگنال های الکتروکاردیوگرام، موثر بودن روش پیشنهادی را نشان می دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Applying The Blind Separation Of Correlated Sources For FECG Extraction Based On The Second Order Statistics

نویسنده [English]

  • Masoud Reza Aghabozorgi Sahaf

Assistant Professor, Communication Department, Electrical and Computer Engineering School, Yazd University

چکیده [English]

The extraction of the fetal electrocardiogram (FECG) from the skin electrode signals recorded of the mother's body is a problem of concern to signal processing. Blind signal separation (BSS) technique that separates some signals from their combinations without acknowledgments about transmission channel, is a fundamental method for solving this problem. The most proposed BSS algorithm for separation of fetal electrocardiogram (FECG) and mother electrocardiogram (MECG) relies on the independence of these signals (ICA). This paper introduces a novel technique for the cases that signals are correlated with each other, i.e. considering a real assumption.  The  method uses Wold decomposition principle for extracting the desired and proper information from the predictable part of the measured data, and exploits approaches based on the second-order statistics to estimate source signals. Simulation results are showed the effectiveness of the method for separation of electrocardiogram signals. 

کلیدواژه‌ها [English]

  • FECG extraction
  • Blind source separation
  • Independent component analysis
  • Wold decomposition
  • Second order statistics
[1]     Fowler R.S., Finlay V.C.D., The electrocardiogram of the neonate, In: The fetal Circulation; 1978: 72-80.
[2]     Oostendorp T.; Modeling the fetal ECG; Ph.D. Dissertation, KU Nijmegen, Netherlands; 1989.
[3]     Zarzoso V., Nandi A.K., Bacharakis E., Maternal and foetal ECG separation using blind source separation methods; Journal of Mathematics Applied in Medicine and Biology 1997: 14:207-225.
[4]     De Lathauwer L., De Moor B., Vandewalle J., Fetal electrocardiogram extraction by blind source subspace separation; IEEE Transactions on Biomedical Engineering 2001: 567-572.
[5]     Comon P., Jutten C., Herault J., Blind separation of sources, part II: problem statements; Signal Processing 1991: 24:11-20.
[6]     Lee T.W., Independent component analysis: theory and applications; Norwell, MA Kluwer Academic; 1998.
[7]     Choi S., Cichocki A., Park H.M., Lee S.Y., Blind source separation and independent component analysis: a review; Neural Information Processing 2005: 6:1-57.
[8]     Belouchrani A., Abed-Meraim K., Cardoso J.F., Moulines E., A blind source separation technique using second-order statistics; IEEE Transactions on Signal Processing 1997: 45: 434-444.
[9]     Cardoso J.F.; Blind signal separation: statistical principles; Proceedings of the IEEE 1998: 86:2009- 2025.
[10] Aghabozorgi M.R., Doost-Hoseini A.M., Blind separation of jointly stationary correlated sources; Signal Processing, Elsevier 2004: 84:2:317-325.
[11] Papoulis A., Probability, random variables, and statistic process; McGraw-Hill, Third Ed.; 1991.
[12] Golub G.H., Van Loan C.F., Matrix computations; Baltimore MD: Johns Hopkins University Press; 1989.
[13] Moreau E., A generalization of joint diagonalization criteria for source separation; IEEE Transactions on Signal Processing 2001: 49:530-541.
[14] PhysioNet the research resource for complex physiologic signals; http://www.physionet.org